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Abstract. For a given O0< § < % if [ N5] neurons deviating from the memorized patterns are

allowed, we constructively show that if and onlydf§) := p(N)/N = (1 — 28)2/(1 —§)2

all stored patterns arixed pointsof the Hopfield model. If N§y] neurons are allowed with

Sy — Othenay = (1—28y)2/(®~1(1—68x))2 — 0 whered is the distribution function of the
normal distribution. The result obtained by Amit and co-workers only formally coincides with
the latter case which indicates that the replica trick approach to the capacity of the Hopfield
model is only valid in the casey — O(N — ©0).

1. Introduction

Although a number of mathematical neural network models were known before, one
proposed by Hopfield in 1982 has provoked a great interest in the scientific community.
This is a mathematical model aiming to describe a network functioning as an associative
memory, i.e. itis able to store information and retrieve it when given degraded data [1, 3, 8].
The Hopfield model includes a set &f formal binary neurons labelled by elements
of {1,..., N} and interconnected one by one. The state ofitheneuron is described
by a spin variabley;(neuron activity) with values if—1, 1}, and the whole network by a
configuration of spingr € X := {—1, 1}V, 0 = (0y)i=1..n- This network is designed to
memorizep(N) patternsE™® e X, u = 1,..., p(N) in the following sense: one associates
the patterre ™ to any configuration sufficiently ‘close’ to it. ‘Close’ usually means a small
Hamming distance.
The retrieval process is described by a dynamics on the configuration Epgiven by

N
oi(t+1) = sign(Z T,,q(t)) r=1,... (1)
j=1
and so a configuratioa = (0;,i = 1,..., N) is a fixed point of the dynamics of (1) if and

only if

N
Uz(ZTz]O'j)>O l=1,,N (2)
Jj=1

This dynamics can be realized either synchronously or asynchronously [6,7,10]. The idea
on the choice of the connectidh; between theith neuron and thgth neuron is based
upon the so-called Hebb learning rule, i.e.

p(N) Ei(/t) %.j(/t)

T, = ==t
I

=T i,j=1,...,N. 3)
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The properties of the Hopfield model have made it an interesting candidate for theoretical
studies, for models of some brain functions and also for technical applications in certain areas
of computer development or artificial intelligence. In all cases, one of the first questions that
comes to mind is the storage capacity of such a model, namely the quantity of information
that can be stored and effectively retrieved from the network. It is of primary interest to
know, for example, how the number of patterns varies with the number of neurons. We
cited below some important properties of the memory capacity that hold with probability
approaching 1 a® — oo.

It has been rigorously shown by MacElieet al [18] that if p(N) < N/(4logN)
then theexact original patterns are attractors of the dynamics of (1). This result has been
extended by Komlos and Paturi [13] who have shown that each pattern has a non-trivial
radius of attraction. Numerical computations and heuristic arguments given in [18] suggest
that p(N) can only grow proportionally t&v/(log N) in order for every pattern to be exactly
recoverable.

If a small fraction of errors is tolerated in retrieved patterns, tp€éN) can increase
more rapidly. Nevertheless, it has been previously suggested by numerical simulations, as
well as by not fully rigorous analytical computations, that there is a collapse in the model
functioning in the regimep(N)/N — a > 0 asN — oo. Hopfield [11] has studied his
model numerically for large values @&f with p(N)/N near somex and with the patterns
chosen at random. He has observed that the memory only functioned well for values of
« less than 0.1. The nature of this collapse was clarified in a paper by émait [2],
who introduced a ‘thermodynamic’ version of the model and discovered that by using the
non-rigorousreplica method foB > 0 the critical capacity is about 0.15. There are also a
number of mathematical results concerning this models, see for example [20] and references
therein. In particular, in [19] the authors tried to replace the replica symmetric trick by the
assumptions on the self-average properties of the Edwards—Anderson parameter and the
very results from [2] are re-obtained.

The first rigorous proof of the existence of an energy barrier for smallas given
by Newman in [16]. This result was later extended to the case wiere 0.071 [14].
However, due to the complexity of the energy landscape they are not all able to reach the
conclusion that dynamics equation (1) with an initial configuration in a ball, centre at stored
pattern and with small enough radius, will not exit from this ball.

In this paper we present a transparent approach based upon the extreme value theory of
statistics and rigorously obtain the capacity of the Hopfield model to $t6nN patterns
as fixed points.

2. Extreme value theory

As usual we assume that (g’ = 1) = %, £, 0 = 1,...,p,i = 1,...,N are
independant identically distributed (iid) random variables taking valugs-ih 1} and for
asetA c {1,..., N} we have, by the central limit theorem,
w1 Wews® oL RN 10 £ (W £ (D
. ) s (p ) (1
g(N. p(N)) = & (N > &g 20 ) Y &80 )
n=2j=1,j#i u=2jeA, j#i
P(N)
_ ; 4
- =y e (4)
weakly whereg;,i = 1,..., N are iid normally distributed random variables with mean 0

and covariance 1. Note that the convergence in equation (4) is independent of the choice
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of setA. Let ¢y be the(N — k)th largest maximum and henggy = max<<y ¢, the
largest maximum. In the sequel for the simplicity of notation we take the convention that
neurons are numbered according to the increasing order nAmely Ni = i. Let [a] be
the integer part ot € RY. For 0< x < 1 the behaviour ofy,; is exactly known in the
extreme value theory of statistics (see figure 1):

(i) x = 1—we havesy = maxci<y & and (see [15, p 15])

lJi_[noo P(en(Cn — gn) < x) = exp(—€ ") (5)
with

ex = (2logN)?
and

gn = (2logN)z — v logN)~2(loglogN + log4r) ~ ey
which enables us to deduce that

IN = €gy (6)

weakly wheree, represents the Dirac measure at paint
(i) 0 < x < 1—we know from corollary 4 to theorem 5.7 in [4, 5] that

lim P <= e%dy L o 7
Jim_Play Gy — %) < 2) = /_Ooe yﬁ = d(z) (7)
with
N3
w= \/ [xNI(N — [xN]) ©)
and therefore
C[xN] — € (9)

weakly sinceay — co whenN — oo.
(i) xy <1 butxy - 1 andN./1— xy — co—theorem 3.3 in [21] tells that

1v“—r>noo Plen ey —dn) <2) = P(2) (10)
with

Ody) =xy oy =NOdy)/v(L—xy) (11)
and therefore

{[Nxy] = €dy (12)
weakly since

A!lm cy = [\!lm (Ndy(A —Ddn)/V/1—xn

= Nlim NO r(xp)v/1—xn

= Nliinoo(N\/ 1—xn)/(®'(P(dy))) = 00
where we have applied the following relation

for dy — oo we have 1- ®(dy) = ®'(dy)/d. (13)

Our following developments totally rely on the behaviours¢gi;: whenx = 1, ¢y
goes to infinity in the order of/2logN; whenxy — 1, ¢, tends to infinity to the
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Figure 1. ¢.n) as a function ofx. Note that whenx = 1, ¢y ~ ,/2logN goes to infinity
(N — o0) and when O< x < 1, {xn] ~ x < 1. The intermediate casgy — 1, xy < 1
described by equation (12) is reploted.

order of ®1(xy); finally when O< x < 1, {len) Stays atx. These differences embody the
different behaviours of the capacity of the Hopfield model discussed in the next section. In
figure 1 we plot,n; as a function ofr, 0 < x < 1. At x = 1, {[,n; is discontinuous; it
jumps from a finite value to the valu@ IogN)%. Due to the difference among the cases
O0<x <1 x=1andxy — 1 we take into account these three cases separately. Let us
start from the simplest case= 1 corresponding té = 0.

3. Capacity

3.1. § = O—perfect retrieval
From equation (4) we obtain

o 1R Lo ol S 000, LR SN 00,000
W) & (1 _ W) & (1
(3 3 ase) =a(y B et g 3 e

u=1j=1j#i j=Lj# u=2 j=1j#i
=1-g(p(N),N)

[ pP(N)
- 1- TCi (14)
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fori =1,..., N. To ensure thatV is a fixed point of the dynamics of (1) if and only if

_[p(N)

1 >0 15
N oY (15)
since¢; < ¢y and
p(N) p(N)
1-— <1—/54——2¢ 16
N ¢N N g (16)
fori € {1,..., N}. From equation (6) we deduce that

1—,/va) oy — 1— #,/mogz\/. (17)

Combining equation (15) and (17) we conclude thdt is a fixed point of the dynamics of
(4) if and only if

p(N) < pc(N) = N/(2logN). (18)

e Result (18) corresponds to the trivial case= 0 and is well known (see for example
[3,18]). The very result is directly obtainable from the statistical signal to noise analyses
(see [3, pp 278-82)).

e Our analyses above indicate that in the simplest case the capacity is utterly determined
by the largest maximum af.

3.2. § > O—retrieval with a fixed error tolerance

Different from the situation discussed above ot 0, here we have the freedom to reverse
the sign of the activity of /6] neurons and the capacity, as one may expect, is not solely
dependent orgy. We address the following two rudimentary issues:

e How many patternsp(N), can we store in a network so that a configurawaig‘?)
with the property

m(o(EY), §V) = (Za,-(g‘”)g,-)/zv =1-2

is a fixed point of the dynamics of (1)?
e Furthermore, how do we choose a gt with [NJ] neurons inB, and satisfy the
property that

oY) = —&Y i €B?

As we have perceived from the discussion abové fer0, those neurons taking extreme
values ofz play an important role for the model. More exactly,we are going to prove that

1)y - 1 @ (1) D @
O‘(S( )) = (51 s %_2 Yoo s[(lﬁs)/\/] - %_[(1,5)1\/“17 cees _SN ) (19)

is a fixed point of the dynamics of (1). TherefoBe= {[(1 —8)N] + 1, ..., N}. In other
words for a givens > 0, o(¢@) is a fixed point of the dynamics of (1) if and only if
o (¢D) is the configuration which reverses the signéé]f) with ¢; taking the (N — i)th
largest maximum ot wherei > [(1— §)N].

Next let us check (see equation (2)) that

N

a,»@(”)( g -2 ) Ti,-f;;”)>o (20)

J=1j#i JEB, j#i
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Figure 2. f defined by equation (22) (full line)x.(8) =
(1—6) and filled circle= (1) = 1-25 —/p(N)/N,/2logN

going to negative infinity ¥ — oo) if « > 0. Broken

f 1 ) line = — £ (x), x(8) < x < 1.
foralli =1,..., N. To this end we define a functi¢prior 0 < x < 1 by
1-25 — Jax ifo<x<1
f&x) = . (21)
1— 28 — /ay/2logN if x=1.
Combining (4), (6) and (9) we get that
N
éf“( > TEt -2 ) Tijé}”) — 125+ g(p(N), N)
j=1,j#i jellA=8)N]+1,...,N}, j#i
N
S 1-25— %g ) 22)
for 0 < x < 1,i = [xN] and similarly
N
1 1 1
& >( > Ty -2 > T;j& >)
J=Lj# JE(lA=0)NI+1,....N}, j#i
N
S - (1— 25 — pgv);,) = —f() (23)

fori = [xN] and O< x < 1. So to prove that (¢) is a fixed point of the dynamics of
(1) we use the fact that it is equivalent to checking that

fx) =0 forO<x<1-5$§ and —f(x)>0 forl1—86 <x <L
(24)
Let
(1 — 26)2
— _ 2
a(5) 1- )2 (25)

we see that our claim (24) is true. This proves the ‘if’ part of our conclusion.

The ‘only if: First note the fact thatf is a decreasing function of (see figure 2),
f(1) - —oo and so to ensure that(¢) is a fixed point of the dynamics of (1) one must
reverse the sign c;;‘[f,)v] starting from a poink.(8). Keeping in mind that one must change
the sign of pN] neurons, we finally conclude that(§) = 1-8, B = {[(1-8)N]+1, ..., N}
and«($) is given by equation (25).

T More reasonably we should define thatl) = —oo.
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3.3.6y > 0butéy — 0and N./8y — oo—retrieval with a decreasing error tolerance

The proof is identical to the case> 0 and so we only state restuits
If and only if the configuration defined by

o) = @6 50 o e ) (26)
is a fixed point of the dynamics of (}y = 1— 6y and

1— 28y — Jaydy =1—28y — Jay® (1 —68y) =0 (27)
which implies that

ay = (1= 25y)?/ (@711 = 8y))%. (28)

4. Discussion

First of all, let us review our main idea emploited in this paper:
e For stored patterns™, u =1, ..., p we derived, by the weak law of large numbers,
that the key identity

N
j=1,j#i FJElA—=8)N]+1,..., N}, j#i
for i = [xN], where f is given by equation (21) for & x < 1.
e f(x) is a decreasing function of.
e If we reverse the sign of.y; with x > x.(8) fulfilling f(x.(8)) = O, then
(61, &, ... gV —Er®N+1, - .-, —&n) is a fixed point of the dynamics of (1) since
the reversement exclusively causes a change of the sigiixoffor x > x.(8) (see figure).
The crucial step above is to find the exact valuef@f). Fortunately, the extreme value
theory in statistics is a ripe file which allows us to carry out our program.
In conclusion, we get a complete picture for the capacity of the Hopfield model for
0<é8 < %, i.e.

0 if =0
a(d) = — 26)2 29
@ ifO<s8 <1 (29)
(1 _ 5)2 2
and ify — 0, Ny/8y — oo (see the following equation (31) and [3 figure 6.5])
(1—25y)°

N (30)

T (@ L1 - 6y)?
(i) Formally the capacityry coincides with that discovered by Angt al [3] in terms
of the replica trick approach since (after omitting higher-order terms)

Voay =1/(@7H1 - 8y)
and therefore

1
Sy = 1— B(L/ ) = & (L Jaw) iy = f/g exp(—m) (31)

the very formula appeared in [3, p 969, equation (6.37)] which was obtained in terms of
the replica trick calculation.

+ The conditionN /5y — ocis only a technical restriction which requires tléat goes to zero at a speed that is
not too fast. We are certainly more interested in the situationsthaends to zero slowly.
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(ii) The functiona (8) is a decreasing function éf The decreasing accuracy of retrieval
memory causes a reduction of the capacity of the Hopfield model. The justification of this
fact lies in the fact that we storg(N) patterns in the Hopfield model and thegéN)
patterns willdominatethe network in the sense that they are going to be fixed points of the
model. The large errors we introduced the more difficulty we have to $10N) patterns.

(i) For given § > 0 if and only if p(N) = [«(8)N] patterns are fixed points of the
dynamics of (1). For givenofN] patterns andx < «(§) it is always possible for us to
add [(@(§) — @) N] patterns to thed N] patterns so thato{N] patterns together with newly
added {«(8) — o) N] patterns are all fixed points of the dynamics. In this sense we have

a:(8) = a(d) and o, = supa(8) = 1.
§>0

(iv) It is reasonable to imagine that those neurons taking extreme values are not ‘normal’
and so we expect a dynamics which does not take into account these states of ‘unnormal’
neurons to considerably increase the capacity of a network. We are going to discuss this
topic in a separate paper.

(v) Here we want to emphasize that our approach (see equations (19) and (26)) presented
in this letter also provides a constructive way to find an attractor corresponding to a stored
pattern.

(vi) Finally, let us make a comparison between our results and approach and existing
results and approach in termstbe replica trick[3]. The replica trick approach, a powerful
tool and widely used in neural networks, is based upon a few assumptions which are not
justified. Thereplica trick in which the value oz, (partition function) obtained for integer
n is analytically continued fon — 0. Since this limit can also be considered as the
derivative of the function®y(n) = %Iog Z, at the pointn = 0 the analiticity of this
function at the poiniz = O is requested. The other non-trivial problem is the uniqueness of
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the limit. The Carleson theorem guarantees that there exists a unique analytic continuation
of the function which is known in the positive integer points if this function, @xgn),

has a bound expC asn — oo. It is easy to see that this condition does not hold for the
Sherrington—Kirkpatrick model [9]. In fact recently it was proved that the Parisi solution
to the Sherrington—Kirkpatrick spin glass, as applied to more realistic spin glass model, is
not valid in any dimension and at any temperature [17]. Our approach, while intuitive and
rigorous, conclude that the replica trick approach to the capacity of the Hopfield model is
only valid in the case thaty — 0 (see figure 3). Note thaty goes to zero a®’ goes to
infinity and «y > 0 is only a phenomenon of finite size effect. Surely a further study to
consider would be under what conditions is a fixed point stable, we believe that it would
make an interesting topic [12].
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