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Abstract. For a given 0< δ < 1
2 if [Nδ] neurons deviating from the memorized patterns are

allowed, we constructively show that if and only ifα(δ) := p(N)/N = (1− 2δ)2/(1− δ)2
all stored patterns arefixed pointsof the Hopfield model. If [NδN ] neurons are allowed with
δN → 0 thenαN = (1−2δN )2/(8−1(1−δN ))2→ 0 where8 is the distribution function of the
normal distribution. The result obtained by Amit and co-workers only formally coincides with
the latter case which indicates that the replica trick approach to the capacity of the Hopfield
model is only valid in the caseαN → 0(N →∞).

1. Introduction

Although a number of mathematical neural network models were known before, one
proposed by Hopfield in 1982 has provoked a great interest in the scientific community.
This is a mathematical model aiming to describe a network functioning as an associative
memory, i.e. it is able to store information and retrieve it when given degraded data [1, 3, 8].

The Hopfield model includes a set ofN formal binary neurons labelled by elements
of {1, . . . , N} and interconnected one by one. The state of theith neuron is described
by a spin variableσi(neuron activity) with values in{−1, 1}, and the whole network by a
configuration of spinsσ ∈ X := {−1, 1}N , σ = (σi)i=1,...,N . This network is designed to
memorizep(N) patternsξ (µ) ∈ X,µ = 1, . . . , p(N) in the following sense: one associates
the patternξ (µ) to any configuration sufficiently ‘close’ to it. ‘Close’ usually means a small
Hamming distance.

The retrieval process is described by a dynamics on the configuration spaceX given by

σi(t + 1) = sign

( N∑
j=1

Tijσj (t)

)
t = 1, . . . (1)

and so a configurationσ = (σi, i = 1, . . . , N) is a fixed point of the dynamics of (1) if and
only if

σi

( N∑
j=1

Tijσj

)
> 0 i = 1, . . . , N. (2)

This dynamics can be realized either synchronously or asynchronously [6, 7, 10]. The idea
on the choice of the connectionTij between theith neuron and thej th neuron is based
upon the so-called Hebb learning rule, i.e.

Tij =
∑p(N)

µ=1 ξ
(µ)

i ξ
(µ)

j

N
i, j = 1, . . . , N. (3)
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The properties of the Hopfield model have made it an interesting candidate for theoretical
studies, for models of some brain functions and also for technical applications in certain areas
of computer development or artificial intelligence. In all cases, one of the first questions that
comes to mind is the storage capacity of such a model, namely the quantity of information
that can be stored and effectively retrieved from the network. It is of primary interest to
know, for example, how the number of patterns varies with the number of neurons. We
cited below some important properties of the memory capacity that hold with probability
approaching 1 asN →∞.

It has been rigorously shown by MacElieceet al [18] that if p(N) < N/(4 logN)
then theexact original patterns are attractors of the dynamics of (1). This result has been
extended by Komlos and Paturi [13] who have shown that each pattern has a non-trivial
radius of attraction. Numerical computations and heuristic arguments given in [18] suggest
thatp(N) can only grow proportionally toN/(logN) in order for every pattern to be exactly
recoverable.

If a small fraction of errors is tolerated in retrieved patterns, thenp(N) can increase
more rapidly. Nevertheless, it has been previously suggested by numerical simulations, as
well as by not fully rigorous analytical computations, that there is a collapse in the model
functioning in the regimep(N)/N → α > 0 asN → ∞. Hopfield [11] has studied his
model numerically for large values ofN with p(N)/N near someα and with the patterns
chosen at random. He has observed that the memory only functioned well for values of
α less than 0.1. The nature of this collapse was clarified in a paper by Amitet al [2],
who introduced a ‘thermodynamic’ version of the model and discovered that by using the
non-rigorousreplica method forβ > 0 the critical capacity is about 0.15. There are also a
number of mathematical results concerning this models, see for example [20] and references
therein. In particular, in [19] the authors tried to replace the replica symmetric trick by the
assumptions on the self-average properties of the Edwards–Anderson parameter and the
very results from [2] are re-obtained.

The first rigorous proof of the existence of an energy barrier for smallα was given
by Newman in [16]. This result was later extended to the case whereα > 0.071 [14].
However, due to the complexity of the energy landscape they are not all able to reach the
conclusion that dynamics equation (1) with an initial configuration in a ball, centre at stored
pattern and with small enough radius, will not exit from this ball.

In this paper we present a transparent approach based upon the extreme value theory of
statistics and rigorously obtain the capacity of the Hopfield model to storep(N) patterns
as fixed points.

2. Extreme value theory

As usual we assume thatP(ξ (µ)i = 1) = 1
2, ξ (µ)i , µ = 1, . . . , p, i = 1, . . . , N are

independant identically distributed (iid) random variables taking values in{−1, 1} and for
a setA ⊂ {1, . . . , N} we have, by the central limit theorem,

g(N, p(N)) := ξ (1)i
(

1

N

p(N)∑
µ=2

∑
j=1,j 6=i

ξ
(µ)

i ξ
(µ)

j ξ
(1)
j − 2

1

N

p(N)∑
µ=2

∑
j∈A,j 6=i

ξ
(µ)

i ξ
(µ)

j ξ
(1)
j

)

→ −
√
p(N)

N
ζi (4)

weakly whereζi, i = 1, . . . , N are iid normally distributed random variables with mean 0
and covariance 1. Note that the convergence in equation (4) is independent of the choice
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of setA. Let ζNk be the(N − k)th largest maximum and henceζNN = max16i6N ζi , the
largest maximum. In the sequel for the simplicity of notation we take the convention that
neurons are numbered according to the increasing order ofζ , namelyNi = i. Let [a] be
the integer part ofa ∈ R1. For 06 x 6 1 the behaviour ofζ[xN ] is exactly known in the
extreme value theory of statistics (see figure 1):

(i) x = 1—we haveζN = max16i6N ζi and (see [15, p 15])

lim
N→∞

P(eN(ζN − gN) 6 x) = exp(−e−x) (5)

with

eN = (2 logN)
1
2

and

gN = (2 logN)
1
2 − 1

2(2 logN)−
1
2 (log logN + log 4π) ∼ eN

which enables us to deduce that

ζN → εgN (6)

weakly whereεa represents the Dirac measure at pointa.
(ii) 0 < x < 1—we know from corollary 4 to theorem 5.7 in [4, 5] that

lim
N→∞

P(aN(ζ[xN ] − x) 6 z) =
∫ z

−∞
e−

y2

2 dy
1√
2π
= 8(z) (7)

with

aN =
√

N3

[xN ](N − [xN ])
(8)

and therefore

ζ[xN ] → εx (9)

weakly sinceaN →∞ whenN →∞.
(iii) xN < 1 but xN → 1 andN

√
1− xN →∞—theorem 3.3 in [21] tells that

lim
N→∞

P(cN(ζ[NxN ] − dN) 6 z) = 8(z) (10)

with

8(dN) = xN cN = N8′(dN)/
√
(1− xN) (11)

and therefore

ζ[NxN ] → εdN (12)

weakly since

lim
N→∞

cN = lim
N→∞

(NdN(1−8(dN)))/
√

1− xN
= lim

N→∞
N8−1(xN)

√
1− xN

= lim
N→∞

(N
√

1− xN)/(8′(8(dN))) = ∞
where we have applied the following relation

for dN →∞ we have 1−8(dN) = 8′(dN)/dN . (13)

Our following developments totally rely on the behaviours ofζ[xN ] : when x = 1, ζN
goes to infinity in the order of

√
2 logN ; when xN → 1, ζ[xNN ] tends to infinity to the
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Figure 1. ζ[xN ] as a function ofx. Note that whenx = 1, ζN ∼
√

2 logN goes to infinity
(N → ∞) and when 0< x < 1, ζ[xN ] ∼ x < 1. The intermediate casexN → 1, xN < 1
described by equation (12) is reploted.

order of8−1(xN); finally when 0< x < 1, ζ[xN ] stays atx. These differences embody the
different behaviours of the capacity of the Hopfield model discussed in the next section. In
figure 1 we plotζ[xN ] as a function ofx, 0 < x 6 1. At x = 1, ζ[xN ] is discontinuous; it
jumps from a finite value to the value(2 logN)

1
2 . Due to the difference among the cases

0 < x < 1, x = 1 andxN → 1 we take into account these three cases separately. Let us
start from the simplest casex = 1 corresponding toδ = 0.

3. Capacity

3.1. δ = 0—perfect retrieval

From equation (4) we obtain

ξ
(1)
i

(
1

N

p(N)∑
µ=1

N∑
j=1,j 6=i

ξ
(µ)

i ξ
(µ)

j ξ
(1)
j

)
= ξ (1)i

(
1

N

N∑
j=1,j 6=i

ξ
(1)
i ξ

(1)
j ξ

(1)
j +

1

N

p(N)∑
µ=2

N∑
j=1,j 6=i

ξ
(µ)

i ξ
(µ)

j ξ
(1)
j

)
= 1− g(p(N),N)

→ 1−
√
p(N)

N
ζi (14)
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for i = 1, . . . , N . To ensure thatξ (1) is a fixed point of the dynamics of (1) if and only if

1−
√
p(N)

N
ζN > 0 (15)

sinceζi 6 ζN and

1−
√
p(N)

N
ζN 6 1−

√
p(N)

N
ζi (16)

for i ∈ {1, . . . , N}. From equation (6) we deduce that

1−
√
p(N)

N
ζN → 1−

√
p(N)

N

√
2 logN. (17)

Combining equation (15) and (17) we conclude thatξ (1) is a fixed point of the dynamics of
(4) if and only if

p(N) 6 pc(N) = N/(2 logN). (18)

• Result (18) corresponds to the trivial caseα = 0 and is well known (see for example
[3, 18]). The very result is directly obtainable from the statistical signal to noise analyses
(see [3, pp 278–82]).
• Our analyses above indicate that in the simplest case the capacity is utterly determined

by the largest maximum ofζ .

3.2. δ > 0—retrieval with a fixed error tolerance

Different from the situation discussed above forδ = 0, here we have the freedom to reverse
the sign of the activity of [Nδ] neurons and the capacity, as one may expect, is not solely
dependent onζN . We address the following two rudimentary issues:
• How many patterns,p(N), can we store in a network so that a configurationσ(ξ (1))

with the property

m(σ(ξ (1)), ξ (1)) =
(∑

i

σi(ξ
(1))ξi

)/
N = 1− 2δ

is a fixed point of the dynamics of (1)?
• Furthermore, how do we choose a setB, with [Nδ] neurons inB, and satisfy the

property that

σi(ξ
(1)) = −ξ (1)i i ∈ B?

As we have perceived from the discussion above forδ = 0, those neurons taking extreme
values ofζ play an important role for the model. More exactly,we are going to prove that

σ(ξ (1)) := (ξ (1)1 , ξ
(1)
2 , . . . , ξ

(1)
[(1−δ)N ] − ξ (1)[(1−δ)N ]+1, . . . ,−ξ (1)N ) (19)

is a fixed point of the dynamics of (1). ThereforeB = {[(1− δ)N ] + 1, . . . , N}. In other
words for a givenδ > 0, σ(ξ (1)) is a fixed point of the dynamics of (1) if and only if
σ(ξ (1)) is the configuration which reverses the sign ofξ (1)i with ζi taking the(N − i)th
largest maximum ofζ wherei > [(1− δ)N ].

Next let us check (see equation (2)) that

σi(ξ
(1))

( N∑
j=1,j 6=i

Tij ξ
(1)
j − 2

∑
j∈B,j 6=i

Tij ξ
(1)
j

)
> 0 (20)
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f

x1x c(δ)

f(1)

-f(1)

Figure 2. f defined by equation (22) (full line).xc(δ) =
(1−δ) and filled circle=f (1) = 1−2δ−√p(N)/N√2 logN
going to negative infinity (N → ∞) if α > 0. Broken
line= −f (x), xc(δ) < x 6 1.

for all i = 1, . . . , N . To this end we define a function† for 0< x 6 1 by

f (x) =
{

1− 2δ −√αx if 0 < x < 1

1− 2δ −√α
√

2 logN if x = 1.
(21)

Combining (4), (6) and (9) we get that

ξ
(1)
i

( N∑
j=1,j 6=i

Tij ξ
(1)
j − 2

∑
j∈{[(1−δ)N ]+1,...,N},j 6=i

Tij ξ
(1)
j

)
= 1− 2δ + g(p(N),N)

→ 1− 2δ −
√
p(N)

N
ζi = f (x) (22)

for 0< x 6 1, i = [xN ] and similarly

−ξ (1)i
( N∑
j=1,j 6=i

Tij ξ
(1)
j − 2

∑
j∈{[(1−δ)N ]+1,...,N},j 6=i

Tij ξ
(1)
j

)

→ −
(

1− 2δ −
√
p(N)

N
ζi

)
= −f (x) (23)

for i = [xN ] and 0< x 6 1. So to prove thatσ(ξ (1)) is a fixed point of the dynamics of
(1) we use the fact that it is equivalent to checking that

f (x) > 0 for 06 x 6 1− δ and − f (x) > 0 for 1− δ 6 x 6 1.

(24)

Let

α(δ) = (1− 2δ)2

(1− δ)2 (25)

we see that our claim (24) is true. This proves the ‘if’ part of our conclusion.
The ‘only if’: First note the fact thatf is a decreasing function ofx (see figure 2),

f (1)→−∞ and so to ensure thatσ(ξ (1)) is a fixed point of the dynamics of (1) one must
reverse the sign ofξ (1)[xN ] starting from a pointxc(δ). Keeping in mind that one must change
the sign of [δN ] neurons, we finally conclude thatxc(δ) = 1−δ, B = {[(1−δ)N ]+1, . . . , N}
andα(δ) is given by equation (25).

† More reasonably we should define thatf (1) = −∞.
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3.3. δN > 0 but δN → 0 andN
√
δN →∞—retrieval with a decreasing error tolerance

The proof is identical to the caseδ > 0 and so we only state results†.
If and only if the configuration defined by

σ(ξ (1)) := (ξ (1)1 , ξ
(1)
2 , . . . , ξ

(1)
[(1−δN )N ],−ξ (1)[(1−δN )N ]+1, . . . ,−ξ (1)N ) (26)

is a fixed point of the dynamics of (1),xN = 1− δN and

1− 2δN −√αNdN = 1− 2δN −√αN8−1(1− δN) = 0 (27)

which implies that

αN = (1− 2δN)
2/(8−1(1− δN))2. (28)

4. Discussion

First of all, let us review our main idea emploited in this paper:
• For stored patternsξ (µ), µ = 1, . . . , p we derived, by the weak law of large numbers,

that the key identity

ξ
(1)
i

( N∑
j=1,j 6=i

Tij ξ
(1)
j − 2

∑
j∈{[(1−δ)N ]+1,...,N},j 6=i

Tij ξ
(1)
j

)
= f (x)

for i = [xN ], wheref is given by equation (21) for 0< x 6 1.
• f (x) is a decreasing function ofx.
• If we reverse the sign ofξ[xN ] with x > xc(δ) fulfilling f (xc(δ)) = 0, then

(ξ1, ξ2, . . . , ξ[xc(δ)N ] , −ξ[xc(δ)N ]+1, . . . ,−ξN) is a fixed point of the dynamics of (1) since
the reversement exclusively causes a change of the sign off (x) for x > xc(δ) (see figure).

The crucial step above is to find the exact value off (x). Fortunately, the extreme value
theory in statistics is a ripe file which allows us to carry out our program.

In conclusion, we get a complete picture for the capacity of the Hopfield model for
06 δ < 1

2, i.e.

α(δ) =


0 if δ = 0

(1− 2δ)2

(1− δ)2 if 0 < δ < 1
2

(29)

and if δN → 0, N
√
δN →∞ (see the following equation (31) and [3 figure 6.5])

αN = (1− 2δN)2

(8−1(1− δN))2 . (30)

(i) Formally the capacityαN coincides with that discovered by Amitet al [3] in terms
of the replica trick approach since (after omitting higher-order terms)

√
αN = 1/(8−1(1− δN))

and therefore

δN = 1−8(1/√αN) = 8′(1/√αN)√αN =
√
αN√
2π

exp

(
− 1

2αN

)
(31)

the very formula appeared in [3, p 969, equation (6.37)] which was obtained in terms of
the replica trick calculation.

† The conditionN
√
δN →∞is only a technical restriction which requires thatδN goes to zero at a speed that is

not too fast. We are certainly more interested in the situation thatδN tends to zero slowly.
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Figure 3. α(δ) versesδ andαN versesδN (intermediate
case, see also figure 6.5 in [3]).αN > 0 is a finite size
effect andαN → 0 whenN →∞.

(ii) The functionα(δ) is a decreasing function ofδ. The decreasing accuracy of retrieval
memory causes a reduction of the capacity of the Hopfield model. The justification of this
fact lies in the fact that we storep(N) patterns in the Hopfield model and thesep(N)
patterns willdominatethe network in the sense that they are going to be fixed points of the
model. The large errors we introduced the more difficulty we have to storeP(N) patterns.

(iii) For given δ > 0 if and only if p(N) = [α(δ)N ] patterns are fixed points of the
dynamics of (1). For given [αN ] patterns andα < α(δ) it is always possible for us to
add [(α(δ)− α)N ] patterns to the [αN ] patterns so that [αN ] patterns together with newly
added [(α(δ)− α)N ] patterns are all fixed points of the dynamics. In this sense we have

αc(δ) = α(δ) and αc = sup
δ>0

α(δ) = 1.

(iv) It is reasonable to imagine that those neurons taking extreme values are not ‘normal’
and so we expect a dynamics which does not take into account these states of ‘unnormal’
neurons to considerably increase the capacity of a network. We are going to discuss this
topic in a separate paper.

(v) Here we want to emphasize that our approach (see equations (19) and (26)) presented
in this letter also provides a constructive way to find an attractor corresponding to a stored
pattern.

(vi) Finally, let us make a comparison between our results and approach and existing
results and approach in terms ofthe replica trick [3]. The replica trick approach, a powerful
tool and widely used in neural networks, is based upon a few assumptions which are not
justified. Thereplica trick in which the value ofZn (partition function) obtained for integer
n is analytically continued forn → 0. Since this limit can also be considered as the
derivative of the function8N(n) = 1

N
logZn at the pointn = 0 the analiticity of this

function at the pointn = 0 is requested. The other non-trivial problem is the uniqueness of
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the limit. The Carleson theorem guarantees that there exists a unique analytic continuation
of the function which is known in the positive integer points if this function, exp8N(n),
has a bound expnC asn→∞. It is easy to see that this condition does not hold for the
Sherrington–Kirkpatrick model [9]. In fact recently it was proved that the Parisi solution
to the Sherrington–Kirkpatrick spin glass, as applied to more realistic spin glass model, is
not valid in any dimension and at any temperature [17]. Our approach, while intuitive and
rigorous, conclude that the replica trick approach to the capacity of the Hopfield model is
only valid in the case thatαN → 0 (see figure 3). Note thatαN goes to zero asN goes to
infinity and αN > 0 is only a phenomenon of finite size effect. Surely a further study to
consider would be under what conditions is a fixed point stable, we believe that it would
make an interesting topic [12].
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